

Math 217.003 F25
Quiz 34 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

(a) The linear transformation $T : V \rightarrow V$ of a finite dimensional vector space V is *diagonalizable* if ...

Solution: The linear transformation $T : V \rightarrow V$ is *diagonalizable* if there exists a basis \mathcal{B} of V such that the matrix of T with respect to \mathcal{B} , denoted $[T]_{\mathcal{B}}$, is a diagonal matrix.

(b) Suppose $\lambda \in \mathbb{R}$ and $T : V \rightarrow V$ is a linear transformation of a finite dimensional vector space V . The *geometric multiplicity* “ $\text{gemu}(\lambda)$ ” of λ is ...

Solution: The *geometric multiplicity* of the eigenvalue λ is the dimension of its eigenspace

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}.$$

In other words,

$$\text{gemu}(\lambda) = \dim(E_{\lambda}).$$

(c) Suppose $n \in \mathbb{N}$. An $n \times n$ matrix A is *diagonalizable* if ...

Solution: An $n \times n$ matrix A is *diagonalizable* if A is similar to a diagonal matrix.

(d) Suppose $m \in \mathbb{N}$. An $m \times m$ matrix A is *symmetric* if ...

Solution: An $m \times m$ matrix A is *symmetric* if it is equal to its transpose:

$$A^{\top} = A.$$

Equivalently, in terms of entries, A is symmetric if $a_{ij} = a_{ji}$ for all $1 \leq i, j \leq m$.

2. (a) Let $V \xrightarrow{T} V$ be a linear transformation, where V is a finite dimensional vector space.

- Define the determinant of T .
- Show the determinant of T you defined above is independent of any choices you made.

*For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: (i) Definition.

Let $\dim(V) = n$, and let $\mathcal{B} = (v_1, \dots, v_n)$ be any basis of V . Consider the matrix of T with respect to \mathcal{B} ,

$$[T]_{\mathcal{B}} \in M_{n \times n}(\mathbb{R}).$$

We define the *determinant* of T to be

$$\det(T) := \det([T]_{\mathcal{B}}).$$

(ii) Independence of basis.

We must show that this number does not depend on the choice of basis \mathcal{B} .

Let \mathcal{B} and \mathcal{C} be two bases of V , and let $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ denote the matrices of T in these bases. There exists an invertible change-of-basis matrix S such that

$$[T]_{\mathcal{C}} = S [T]_{\mathcal{B}} S^{-1}.$$

(In words: the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ are similar.)

Taking determinants and using the multiplicative property of determinants, we obtain

$$\det([T]_{\mathcal{C}}) = \det(S[T]_{\mathcal{B}}S^{-1}) = \det(S) \det([T]_{\mathcal{B}}) \det(S^{-1}).$$

Since $\det(S^{-1}) = 1/\det(S)$, this simplifies to

$$\det([T]_{\mathcal{C}}) = \det([T]_{\mathcal{B}}).$$

Thus the determinant of T computed in basis \mathcal{C} equals the determinant computed in basis \mathcal{B} . Because any two choices of basis are related by an invertible change-of-basis matrix, the value $\det(T)$ is well-defined and independent of the basis used.

3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

Suppose V is a vector space and $T: V \rightarrow V$ is a linear transformation. For all $\lambda \in \mathbb{R}$ we have $T[E_{\lambda}] \subset E_{\lambda}$ with equality if and only if $\lambda \neq 0$.

Solution: False.

The inclusion $T[E_{\lambda}] \subset E_{\lambda}$ is true for every λ , because if $v \in E_{\lambda}$ then $T(v) = \lambda v$, and hence

$$T(T(v)) = T(\lambda v) = \lambda T(v),$$

so $T(v) \in E_{\lambda}$.

However, the additional claim “with equality if and only if $\lambda \neq 0$ ” is false. For example, let $T = I$ on \mathbb{R}^n . Then the 0-eigenspace is

$$E_0 = \ker(I) = \{0\}.$$

Thus

$$T[E_0] = \{0\} = E_0,$$

so equality holds even though $\lambda = 0$. This contradicts the statement's "if and only if" condition.

Therefore, the statement is **false**.

4. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

Suppose \vec{v}_1, \vec{v}_2 are linearly independent vectors in \mathbb{R}^3 . Suppose $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is given by orthogonal projection onto the 2-dimensional subspace $V = \text{span}(\vec{v}_1, \vec{v}_2)$.

(a) The geometric multiplicity of 1 is 1.

Solution: FALSE.

Since T is orthogonal projection onto V , we have

$$T(\vec{v}) = \vec{v} \quad \text{for all } \vec{v} \in V.$$

Thus every nonzero vector in V is an eigenvector with eigenvalue 1, so

$$E_1 = V.$$

Because V is a 2-dimensional subspace of \mathbb{R}^3 , we have

$$\text{gemu}(1) = \dim(E_1) = \dim(V) = 2.$$

Therefore the geometric multiplicity of 1 is 2, not 1, so the statement is false.

(b) The geometric multiplicity of 0 is 1.

Solution: TRUE.

For orthogonal projection T onto the plane V , every vector orthogonal to V is mapped to $\vec{0}$. Let V^\perp denote the orthogonal complement of V in \mathbb{R}^3 . Then

$$E_0 = \{\vec{w} \in \mathbb{R}^3 : T(\vec{w}) = 0\} = V^\perp.$$

Since V is a 2-dimensional subspace of \mathbb{R}^3 , its orthogonal complement V^\perp is 1-dimensional. Therefore

$$\text{gemu}(0) = \dim(E_0) = \dim(V^\perp) = 1.$$

So the statement is true.

(c) The geometric multiplicity of -1 is 1.

Solution: FALSE.

An eigenvalue λ of T must satisfy

$$T(\vec{x}) = \lambda \vec{x}.$$

But T is an orthogonal projection onto V , so its only possible eigenvalues are 1 and 0:

- If $\vec{x} \in V$ and $\vec{x} \neq 0$, then $T(\vec{x}) = \vec{x}$, so $\lambda = 1$.

- If $\vec{x} \in V^\perp$ and $\vec{x} \neq 0$, then $T(\vec{x}) = 0$, so $\lambda = 0$.

There is no nonzero vector \vec{x} such that $T(\vec{x}) = -\vec{x}$, so -1 is not an eigenvalue of T . Thus

$$E_{-1} = \{\vec{0}\},$$

and the geometric multiplicity of -1 is

$$\text{gemu}(-1) = \dim(E_{-1}) = 0,$$

not 1. Hence the statement is false.