

Math 217 Fall 2025
Quiz 26 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

(a) Suppose $m \in \mathbb{N}$. An $m \times m$ matrix A is *orthogonal* if

Solution: its transpose is its inverse:

$$A^\top A = I_m \quad (\text{equivalently } AA^\top = I_m).$$

(b) A set of vectors $\{\vec{v}_1, \dots, \vec{v}_r\}$ in \mathbb{R}^n is *orthonormal* provided that

Solution: each vector has unit length and distinct vectors are orthogonal:

$$\vec{v}_i \cdot \vec{v}_j = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

(c) Let $T : V \rightarrow V$ be linear and $\mathfrak{B} = (v_1, \dots, v_n)$ an ordered basis of V . The *matrix of T with respect to \mathfrak{B}* is

Solution: the $n \times n$ matrix $[T]_{\mathfrak{B}}$ whose j -th column is the \mathfrak{B} -coordinate column vector of $T(v_j)$:

$$[T]_{\mathfrak{B}} = \begin{bmatrix} [T(v_1)]_{\mathfrak{B}} & [T(v_2)]_{\mathfrak{B}} & \cdots & [T(v_n)]_{\mathfrak{B}} \end{bmatrix}.$$

Equivalently, for every $v \in V$ we have $[T(v)]_{\mathfrak{B}} = [T]_{\mathfrak{B}} [v]_{\mathfrak{B}}$.

2. (a) Let V be a vector space and $\mathcal{S} = (w_1, \dots, w_m)$ a spanning list for V . Suppose w_j is in the span of $\mathcal{S}' = (w_1, \dots, w_{j-1}, w_{j+1}, \dots, w_m)$. Prove that \mathcal{S}' also spans V .

Solution: Because \mathcal{S} spans V , every $v \in V$ can be written as

$$v = a_1 w_1 + \cdots + a_{j-1} w_{j-1} + a_j w_j + a_{j+1} w_{j+1} + \cdots + a_m w_m.$$

By hypothesis, $w_j = \sum_{i \neq j} c_i w_i$ for some scalars c_i . Substituting,

$$v = \sum_{i \neq j} a_i w_i + a_j \sum_{i \neq j} c_i w_i = \sum_{i \neq j} (a_i + a_j c_i) w_i,$$

which is a linear combination of vectors in \mathcal{S}' . Thus every $v \in V$ lies in $\text{Span}(\mathcal{S}')$, and \mathcal{S}' spans V .

*For full credit, please write out fully what you mean instead of using shorthand phrases.

(b) Suppose $m \in \mathbb{N}$ and $O : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is an orthogonal transformation. Show that O is surjective.

Solution: Orthogonality means $\langle O(x), O(y) \rangle = \langle x, y \rangle$ for all x, y . In particular, if $O(x) = 0$ then

$$\|x\|^2 = \langle x, x \rangle = \langle O(x), O(x) \rangle = \|O(x)\|^2 = 0,$$

so $x = 0$. Hence O is injective. Any injective linear map $\mathbb{R}^m \rightarrow \mathbb{R}^m$ is automatically surjective (rank-nullity). Alternatively, in matrix form $Q^\top Q = I_m$, so Q is invertible and O^{-1} exists; thus O is bijective and hence surjective.

3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

Define $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T(x) = Ax$ with

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

(a) Let $\mathcal{E} = (\vec{e}_1, \vec{e}_2)$. The matrix $[T]_{\mathcal{E}}$ is orthogonal.

Solution: TRUE. Here $[T]_{\mathcal{E}} = A$. Compute

$$A^\top A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.$$

So A is orthogonal (indeed a 90° counterclockwise rotation).

(b) Let $\mathcal{B} = (\vec{e}_1, \vec{e}_2 + 5\vec{e}_1)$. The matrix $[T]_{\mathcal{B}}$ is orthogonal.

Solution: FALSE. With $P = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$ whose columns are \mathcal{B} , we have

$$[T]_{\mathcal{B}} = P^{-1}AP = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} -5 & -26 \\ 1 & 5 \end{bmatrix}.$$

Then

$$[T]_{\mathcal{B}}^\top [T]_{\mathcal{B}} = \begin{bmatrix} 26 & 135 \\ 135 & 701 \end{bmatrix} \neq I_2.$$

So it is not orthogonal. (In general, the matrix of an orthogonal map is orthogonal *iff* the chosen basis is orthonormal.)

(c) Let $\mathcal{C} = (\vec{u}_1, \vec{u}_2)$ be any orthonormal basis of \mathbb{R}^2 . The matrix $[T]_{\mathcal{C}}$ is orthogonal.

Solution: TRUE. If Q is the orthogonal change-of-basis matrix with columns \vec{u}_1, \vec{u}_2 , then

$$[T]_{\mathcal{C}} = Q^\top A Q.$$

Hence

$$[T]_{\mathcal{C}}^\top [T]_{\mathcal{C}} = (Q^\top A Q)^\top (Q^\top A Q) = Q^\top A^\top A Q = Q^\top I Q = I,$$

because A is orthogonal and $Q^\top Q = I$. Thus $[T]_{\mathcal{C}}$ is orthogonal.