

Math 217 Fall 2025
Quiz 25 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

(a) Suppose $n \in \mathbb{N}$. A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is *orthogonal* if

Solution: it preserves the Euclidean inner product, i.e.

$$\vec{x} \cdot \vec{y} = T(\vec{x}) \cdot T(\vec{y}) \quad \text{for all } \vec{x}, \vec{y} \in \mathbb{R}^n.$$

Equivalently, its standard matrix Q satisfies $Q^\top Q = I_n$.

(b) Suppose $m \in \mathbb{N}$. An $m \times m$ matrix A is *orthogonal* if ...

Solution: its transpose is its inverse:

$$A^\top A = I_m \quad (\text{equivalently, } AA^\top = I_m).$$

This is equivalent to saying that A represents an inner-product-preserving linear map on \mathbb{R}^m .

(c) Let $\mathfrak{B} = (v_1, \dots, v_d)$ be a basis for the vector space V and let $v \in V$. The \mathfrak{B} -coordinates of v are ...

Solution: the unique scalars a_1, \dots, a_d such that

$$v = a_1 v_1 + \dots + a_d v_d.$$

We collect them into the column vector $[v]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix}$.

2. (a) Suppose V is a vector space and $\mathcal{A} = (v_1, \dots, v_n)$ is a maximal linearly independent subset of V . Show that \mathcal{A} is a basis for V .

Solution: By definition, maximal linear independence means that no vector $v \in V \setminus \text{Span}(\mathcal{A})$ can be added to \mathcal{A} while preserving linear independence. If $\text{Span}(\mathcal{A}) \neq V$, pick $w \in V \setminus \text{Span}(\mathcal{A})$. Then $\mathcal{A} \cup \{w\}$ is linearly independent (since w is not in the span of \mathcal{A}), contradicting maximality. Hence $\text{Span}(\mathcal{A}) = V$. Together with linear independence, this shows \mathcal{A} is a basis.

*For full credit, please write out fully what you mean instead of using shorthand phrases.

(b) Suppose $m \in \mathbb{N}$ and A is an $m \times m$ matrix with columns $\vec{v}_1, \dots, \vec{v}_m \in \mathbb{R}^m$. Show that A is orthogonal if and only if its columns are orthonormal.

Solution: Compute

$$A^\top A = \begin{bmatrix} \vec{v}_1^\top \\ \vdots \\ \vec{v}_m^\top \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix} = (\vec{v}_i \cdot \vec{v}_j)_{1 \leq i, j \leq m}.$$

Thus $A^\top A = I_m$ if and only if $\vec{v}_i \cdot \vec{v}_j = \delta_{ij}$, which means $\vec{v}_i \cdot \vec{v}_j = 1$ when $i = j$ and $\vec{v}_i \cdot \vec{v}_j = 0$, when $i \neq j$. Thus, the columns have unit length and are mutually orthogonal. Therefore, A is orthogonal \iff its columns are orthonormal.

3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

(a) Suppose $n \in \mathbb{N}$ and $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an orthogonal transformation. The standard matrix of T has columns that are orthonormal.

Solution: TRUE. Let Q be the standard matrix of T . Orthogonality of T gives $Q^\top Q = I_n$. As in Q2(b), $Q^\top Q$ has (i, j) -entry $\vec{q}_i \cdot \vec{q}_j$, where \vec{q}_j is the j -th column of Q . Hence $\vec{q}_i \cdot \vec{q}_j = \delta_{ij}$, so the columns are orthonormal.

(b) If $m \in \mathbb{N}$ and $O : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is an orthogonal transformation, then O is injective.

Solution: TRUE. Let Q be the matrix of O . Since O is orthogonal, $Q^\top Q = I_m$, so Q is invertible (indeed $Q^{-1} = Q^\top$). An invertible linear map is injective. Alternatively, if $O(\vec{x}) = \vec{0}$, then

$$\|\vec{x}\|^2 = \vec{x} \cdot \vec{x} = (O\vec{x}) \cdot (O\vec{x}) = \|\vec{0}\|^2 = 0,$$

so $\vec{x} = \vec{0}$.