

Math 217 Fall 2025
 Quiz 16 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

(a) Suppose A is an $m \times n$ matrix, the *transpose* of A is ...

Solution: The $n \times m$ matrix obtained by interchanging rows and columns of A ; that is, if $A = (a_{ij})$, then

$$A^\top = (a_{ji}) \quad \text{so that} \quad (A^\top)_{ij} = a_{ji}.$$

(b) Suppose V and W are vector spaces and $T: V \rightarrow W$ is a linear transformation. The *image* of T is ...

Solution: The set of all outputs of T , i.e.

$$\text{im}(T) = \{ T(v) \in W : v \in V \}.$$

It is a subspace of W .

(c) Suppose U is a vector space and $u_1, \dots, u_n \in U$. The *span* of (u_1, \dots, u_n) is ...

Solution: The set of all finite linear combinations of the u_i :

$$\text{span}(u_1, \dots, u_n) = \left\{ a_1 u_1 + \dots + a_n u_n : a_1, \dots, a_n \in \mathbb{F} \right\}.$$

It is the smallest subspace of U containing $\{u_1, \dots, u_n\}$.

2. Fix any ordered basis (v_1, \dots, v_n) for V , and consider the map

$$\phi: \mathbb{R}^n \rightarrow V, \quad \phi \left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right) = a_1 v_1 + \dots + a_n v_n.$$

(a) Show that ϕ is a linear transformation.

*For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: Let $x = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, $y = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^n$, and $\alpha, \beta \in \mathbb{F}$. Then

$$\begin{aligned}\phi(\alpha x + \beta y) &= \phi\left(\begin{bmatrix} \alpha a_1 + \beta b_1 \\ \vdots \\ \alpha a_n + \beta b_n \end{bmatrix}\right) = \sum_{i=1}^n (\alpha a_i + \beta b_i) v_i \\ &= \alpha \sum_{i=1}^n a_i v_i + \beta \sum_{i=1}^n b_i v_i = \alpha \phi(x) + \beta \phi(y).\end{aligned}$$

Thus ϕ is linear.

(b) Show that ϕ is an *isomorphism*.

Solution: Define $\psi : V \rightarrow \mathbb{R}^n$ by sending each $v \in V$ to its coordinate column relative to the basis (v_1, \dots, v_n) , i.e., if $v = \sum_{i=1}^n c_i v_i$, set $\psi(v) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$. Then ψ is linear and

$$\begin{aligned}(\psi \circ \phi)\left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}\right) &= \psi\left(\sum_{i=1}^n a_i v_i\right) = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \quad \text{i.e., } \psi \circ \phi = \text{Id}_{\mathbb{R}^n}, \\ (\phi \circ \psi)(v) &= \phi\left(\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}\right) = \sum_{i=1}^n c_i v_i = v \quad \text{i.e., } \phi \circ \psi = \text{Id}_V.\end{aligned}$$

Hence ϕ is bijective with inverse ψ , so ϕ is an isomorphism.

3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

(a) If V is a vector space and \mathcal{S} is a finite list of vectors in V such that $\vec{0}$ is on the list, then \mathcal{S} is linearly dependent.

Solution: TRUE. If 0_V is in the list, then $1 \cdot 0_V + 0 \cdot (\text{others}) = 0_V$ is a nontrivial linear relation, so the list is linearly dependent.

(b) Any four vectors in \mathbb{R}^3 are linearly dependent.

Solution: TRUE. $\dim(\mathbb{R}^3) = 3$, so any list containing more than three vectors in \mathbb{R}^3 must be linearly dependent.

Equivalently, by the Rank–Nullity Theorem, for a linear map represented by a $3 \times n$ matrix, the rank cannot exceed 3. Hence, if $n > 3$, the nullity (dimension of the kernel) is positive, meaning the columns are linearly dependent. (For example, in a 3×3 matrix, the kernel is trivial precisely when the columns are independent.)